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1 Introduction 
The stationary-state hypothesis (SSH) plays a central role in the evaluation of 
data obtained from chemical kinetics studied in a closed reaction vessel. It is 
often a good approximation and until the past ten years was regarded as widely 
valid except in explosive systems where the condition for its breakdown (as in 
simple branched-chain reactions) is identified with the explosion limit. Recently 
other spectacular cases have come to light where the SSH does not hold, e.g. 
in oscillatory chemical reactions, which are discussed elsewhere.1 We shall be 
interested in cases where the equations representing the SSH have more than 
one solution, i.e., depending on the initial conditions, the system can reach 
different final stationary states. 

The above remarks which apply to closed systems apply quite rigorously to 
open reactors where the reactants flow in and the products flow out. In this case 
the SSH is exact and the steady state is genuinely steady. The examples discussed 
in this article deal strictly with open systems, but everything can be transposed to 
closed systems provided that the SSH is shown to be a valid approximation. To 
illustrate this we will consider a simple example. 

Consider the reaction 
ki ki 

A - , X - , B  

where X is perhaps a radical or an unstable intermediate. Neglecting reverse 
reactions the equations describing the system are 

dA/dt = - klA (1) 

(2) dX/dt = klA - k2X 

where A and X are the concentrations of A and X respectively. The SSH would 
postulate 

dX/dt = 0, Xs = klA/k2 (3) 

which will be a good approximation if k2 5 klA.1 In a continuous stirred tank 
reactor (CSTR) the equations will be 

B. F. Gray, ‘Kinetics of Oscillating Reactions’, in ‘Reaction Kinetics,’ ed. P. G. Ashmore 
(Specialist Periodical Reports), The Chemical Society, London, 1975, Chapter 8. 
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dA/dt = - k i A  + k 

dX/dt = + k l A  - k2X - kl‘X 

where k is a constant inward flux of A and kl’X represents removal of X by the 
flow. Under normal conditions the system will actually achieve the steady state 

(4) 

(5 )  

Xs = klAsl(k2 + kl’) (6) 

As = k/kl  (7) 

In such a simple system, and in many other more complex systems, equations 
(3) and (6) for the steady-state intermediate concentration are linear and have 
only a single solution. This was implicitly assumed to be universally true for 
isothermal chemical systems until fairly recently, but the acknowledged existence 
of at least three steady states for a single first-order reaction when its heat effect 
is considered2 might well have been expected to throw some doubt on this 
assumption (see Figure 1). This assumption is not correct and a numher of 

T 

Figure 1 Heat generation and loss curves for a simple exothermic reaction 

interesting cases are now known where the steady-state equation such as (6) 
[or (3) for a closed system] has more than one physically acceptable solution. 
Clearly, higher-order reactions must be involved as the equations must be 
non-linear, i.e. a quadratic or cubic, etc. In a closed system, where the equations 
of the SSH have more than one solution, this means that the overall reaction 
rate, calculated by substituting the steady-state values for the intermediates, 
can have more than one form. 

B. F. Gray, P. Gray, and N. A. Kirwan, Combustion and Flame, 1972, 18, 439. 
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Of c o m e  in any chemical or physical system the behaviour cannot be under- 
stood solely in terms of the number of steady states since these are not physically 
significant unless shown to be stable. For example the simple pendulum has two 
steady states, but the one pointing vertically upwards is unstable in so far as 
idnitesirnal perturbations will displace it downwards towards the lower stable 
state (if the pendulum is damped). Likewise it is necessary to show which of a set 
of multiple steady states in a chemical kinetic system is stable. This is done 
mathematically by looking into whether perturbations from the steady state in 
question grow or decay. Usually steady states alternate in stability: stable- 
unstable-stable, etc. The example in Figure 1 shows this sort of behaviour, i.e. 
the middle steady state is unstable, the upper and lower being stable. The middle 
one acts like a watershed and is known as a saddle point. The instability of steady 
state 2 can be seen qualitatively by considering a small upward perturbation of T. 
Since at this steady state the slope of the heat release curve is greater than that 
of the straight line (representing conductive losses), the former will increase 
more than the latter, thus reinforcing the perturbation and pushing the temper- 
ature still higher. A similar examination of steady states 1 and 3 shows a secon- 
dary effect tending to nullify the perturbation and thus giving stability. 

Later, when we have analysed a few examples of purely kinetic multistability, 
we shall see how imposition of a slowly varying parameter on the system can 
cause rapid switches from one stable steady state to another, giving what 
superficially appears to be very odd behaviour such as discontinuities in reaction 
rate and spiky oscillations. 

The importance of these rapid switches in complex biochemical networks 
cannot be overemphasized as they offer much greater possibilities of control 
than do ordinary smoothly responding chemical systems. For a control system to 
be effective it must satisfy two criteria:3 there must be a sharp threshold in the 
concentration of the inducing substrate necessary to ‘fire’ the control and a rapid 
response of the control system. In practice it would be difficult to distinguish a 
control system which had true multistability from one which merely had rapid 
response, except by hysteresis effects. However, in terms of the two-effectiveness 
criteria a control system operating in a region of multiple steady states will 
always have a sharper threshold and faster response than the same system acting 
in a region of monostability. Jacob and Monod4 have proposed several models 
for transcriptional control of gene expression, Chernavskii et aZ.5 and 
Edelstein6 have studied the multistability of these models. These genetic 
‘triggers’ form the basis of the gradient theory of morphogenesis.7 According to 
this theory gradients of ‘morphogens’ exist in embryonic tissue and differentiation 
occurs when one or more of the substrates exceeds (or falls below) a certain 
threshold, causing a switch in cellular biochemistry. Although the molecular 

M. A. Savageau, Nature, 1974, 252, 546. 
F. Jacob and J. Monod, J.  Mol. Biol., 1961, 3, 318. 

logical and Chemical Systems’, Nauka, Moscow, 1967. 
B. B. Edelstein, J.  Theor. Biol., 1972, 37, 221. 

5 D. S. Chernavskii, L. N. Grigorov, and M. C. Poliakova, in ‘Oscillating Processes in Bio- 

’ L. Wolpert, J.  Theor. Biol., 1969, 25, 1 .  
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nature of these switches has not been discovered as yet a system exhibiting 
multistability is a good candidate. 

2 An Autocatalytic Example 
Many of the kinetic schemes which are now known to show multistability contain 
an enzyme conversion step, 

E + S +ES + E  + P 
where enzyme combines with substrate to form an enzyme-substrate complex 
which then splits to enzyme plus product. This reaction sequence is basic in 
biochemical systems and when it is combined with an autocatalytically produced 
substrate, 

A + S + A S  
ki 

k-1 

k, k, 

k-, k-, 
E + S +ES + E  + P 

Edelsteins has shown that more than one steady state is possible under some 
circumstances. If we assume that A and P, the concentrations of A and P, are 
maintained constant by the flow processes, or in large excess and approximately 
constant in a closed ~ys tem,~  we have two kinetic equations for this system, 

dS/dt = k1A.S - k - d ’  - k2E.S f k-z(ET - E )  

dE/dt = -k2E.S - k-3E.P + (k3 + k-z ) (E~  - E) 

(9) 

(10) 

where ET is the total enzyme concentration (complexed and free), assumed con- 
stant. This is realistic since cell membranes will allow influx and efflux of 
metabolites, but not enzymes. If we put the right-hand sides of equations (9) 
and (10) equal to zero and perform the algebra of eliminating Es we obtain a 
cubic for Ss : 
k-lk2Ss3 + Ck-l(k-3P + k-2 + k3) - k1k2A]Ss2 

+ [k2k3E~ - klA(k-3P + k-2 + k3)lSs - k-2k-d’E~ = 0 (11) 

For a physically acceptable range of values of the coefficients of this cubic theie 
are three positive roots, the middle one being unstable. The variation of the roots 
of this equation as a function of one of the independent parameters (A for 
example) is shown in Figure 2, and it can be seen that there is a critical situation 
wheIe two of the roots merge (and become first imaginary and then complex): 
this situation is known mathematically as a bifurcation. At parameter values 
corresponding to the steady state l’, the system will suddenly jump into the new 
steady state 3’. The calculation of the rate at which this transition occurs is 
fairly difficult9 and need not concern us here; we can simply assume that the 
jump is very rapid once the unstable point 1’ is achieved. 

* B. B. Edelstein, J. Theor. Biol., 1970, 29, 57. 
B. F. Gray and L. J. Aarons, Symp. Faraday Soc., 1974, NO. 9, p. 129. 
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S 
A 

5 A 

Figure 2 Steady-state curve showing bistability 

At this point we introduce the concept of chemical hysteresis. If the system is 
initially on the lower branch of the steady-state curve and we gradually increase 
the parameter until at 1’ the system jumps to 3’ and then moves to the right along 
the upper branch. Similarly if the system is initially on the upper branch and the 
parameter is gradually reduced the system will jump to the lower branch at the 
other critical point and move to the left along this curve. Thus there are steady 
states which cannot be achieved by smoothly varying the parameter, unlike 
systems which have only one steady state where all points are accessible by 
simple sweeping through a parameter determining them. This phenomenon is 
known as hysteresis and whenever it is observed it indicates the existence of 
multistability. 

The mechanism summarized by equation (8) works as a highly efficient control 
when the product of the reaction is suddenly required by an organism in an 
emergency, but not normally desirable in large quantities (such as adrenalin). 
There are many other types of kinetic scheme now known involving only a few 
variables which show multistability, and some of these are discussed below. 

3 Product Inhibition 
This type of reaction is often suggested as a source of chemical oscillations10 in 
biological systems, and is also a possible candidate for multistability. Consider 
the following scheme 

ki kz k 
E + S -+ ES --+ E + P + Exterior 

2P + E +EPz 
ks 

k-r 
(12) 
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where E, S ,  and P represent enzyme, substrate, and product respectively. EP:! 
is an enzyme-product complex, whose existence does not favour the progress of 
the reaction, effectively removing enzyme from availability. Again we assume 
realistically that the reactor cell is impermeable to enzyme, which is therefore 
conserved (over the time-scale of interest), so that 

ET = E + ES + EPz ( 1  3) 

The kinetic equations are 

dS/dt = -klES + k2E.S + K(S0 - S) (14) 

dP/dt = k2E.S - kP 

where k is the efflux rate of P from the reactor and K(So - S) represents a 
diffusive influx term from a reservoir held at a constant concentration SO. 
In the steady state, 

ESS = klSoEsIk2 ( 1  5 )  

and with the conservation condition (13) we get 

Es = E T / ( ~  + kiS/kz + kaP2/k-3) 

so that the rate equations (14) become 

k i E d  
1 + (kiSlkz) + ( k ~ P ~ I k - 3 )  

- - kP 
d P  
dt 
_I- 

dS - kl ETS 
- =  + K(So - S) dt 1 + (kiS/kz) + (ksP2/k-3) 

Equating these two equations to zero gives, after some manipulation, 

K(S0 - Ss) = klETSs/[l + (klSs/k2) + (k3K2/k3k2) (SO - SsI2I (18) 

The number of roots for Ss of this equation is easily investigated graphically by 
plotting the right- and left-hand sides on the same graph, roots of the equation 
being represented by interesections. These functions are plotted in Figure 3 for 
the case where kllk2 > 2k3K2So/k-3k2. It is seen that it is possible for this 
equation to have either one or three steady states. The number actually occurring 
depends on the independent parameters SO and K and the rate constants. Some 
of these are intrinsically fixed for a given system (the rate constants at a given 
temperature), but the physical parameters K,  S o ,  and k can easily be varied. 
SO is the concentration of substrate in which the cell is immersed, K depends on 
the surface area of the interface and the diffusion coefficient in the membrane 
(easily altered rapidly by a nerve impulse), and k also depends on similar factors. 
Again we have a biochemically plausible simple reaction network showing the 
possibility of multistability in a hasically isothermal system. One general result 
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Partial 
rate 1 

Figure 3 Steady-state analysis of equation ( 1  8 ) .  (a) One steady state; (b) three steady states 

emerges from this example and that is that if more than one product molecule 
combines with the enzymes one is likely to achieve multistability. 

A related and interesting case arises when two enzyme-catalysed reactions 
cross-inhibit each other, i.e. 

ki ka 
El + Si 4 EiSi El + PI 

E2 + S2 4 E2S2 3 E2 + P2 

2P2 + Ei + EiP2P2 

ki ks 

ka 

k-s 
ks 

k-s 
2P2 + E2 f EzPiPi 

(19) 

To simplify the algebra we have assumed that the two pathways are symmetrical 
with respect to rate constants. This provides a possible mechanism for switching 
rapidly between two metabolic pathways, one of which may have become un- 
favourable to the organism, e.g. the depletion of a convenient foodstuff in the 
diet or an increase in the proportion of the other component. In keeping with 
this we will only consider the variation of PI and PZ explicitly and treat 5’1 and SZ 
as slowly varying parameters. The rate equations become, after some algebraic 
manipulation, 

kiETsi 
1 + (kiSi/kz) + (k3Pz2/k-3) 

- - kP1 
dPi 
dt 
- -  

(20) 
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The steady-state equations are 

whence 

k3[l + (kiSz/kz) + (k3Pi2/k-3)I2 Pi + k3k3(kiE~Sz)2 Pilk-3 
k2 [I + (kiSz/kz) + (k3Pl2/k-3)I2 [k& - (k  kiPi/kz)] $1 = (21) 

This function is plotted in Figure 4 for two different sets of parameters. Provided 
that k3Jk-3 3- kl/k2 there is a region of multistability. Alternatively the steady 
state shows a monotonic dependence on S1. 

Figure 4 Steady-stateanalysisofeguation (21). Parametric values: k ,  = k2 = S2 = k = 1 ,  
ET = 2 ;  (a) k3/k--3 = 2, (b) k,lk-, = 20 

If the system is originally on the lower branch [curve (b)] the effect of increasing 
S1 beyond the jump point is to cause a transition to the upper branch which 
corresponds to a decrease in PB. This model thus describes how an organism 
could switch rapidly from utilizing one substrate to another if this substrate 
becomes more easily available. The existence of the switch is determined by 
either large inhibition (k3/k-3) or a large Michaelis constant (kzlkl) or both. 
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4 Substrate Inhibition 
Degnll has studied the oxidation of the reduced form of nicotinamide adenine 
dinucleotide (NADH) by horseradish peroxidase in an open system where 
oxygen was continuously bubbled into solution. Oxygen inhibits the oxidation 
by combining with the enzyme (reversibly) to form an inactive complex. He 
followed both the oxygen concentration (in solution) polarographically and the 
enzyme-substrate complex spectrophotometrically. When the external oxygen 
concentration was increased slowly from zero to a constant level the oxygen 
concentration in the solution increased to a very low level where it remained 
constant. If, however, the external supply was pulsed and then returned to the 
original constant level, the internal concentration of oxygen rose rapidly to a 
new, much larger level where it remained constant. This strongly suggested the 
existence of two stable stationary states reached by diffeient initial conditions. 
Degn proposed the following method to account for this : 

ki ks 
SO =: S + E ES - E + P + Exterior (22) 

k* 

k-a 
S + ES +ES2 

The rate equation for S is 
dS - klETS 
- =  + K(So - S)  (23) dt 1 + (kiS/kz) + (k1k3S~Jkzk-3) 

This equation is formally similar to equation (18) and hence regions of multi- 
stability exist. Switching from one steady state to the other is mediated by varying 
SO which here is the external oxygen concentration. The effect of this switching 
mechanism is to increase the internal concentration of the substrate rapidly when 
the external concentration is increased while the amount of product is rapidly 
reduced. Thus the cell can be made rapidly more permeable to substrate, but 
more likely this switch will initiate some other event. For example, if the sub- 
strate is converted into more than one product competitively the effect of the 
switch is to change from the production of one product to the other.12 This then 
represents feedback to the environment and shows how an organism could adapt 
to changing external conditions. To illustrate this further consider the simple 
substrate reaction 

S 3 Pl 3 Exterior 

together with equation (22). The form of the steady-stage equation is unchanged 
but now a transition from one steady state to the other causes a switch in 
production from P to Pl  or vice versa. 

5 Induction 
In many biochemical systems the enzyme is in an inactive or repressed state, 

l1 H. Degn, Nature, 1968,217, 1047. 
Is J. Higgins, Mem. Acad. Roy. Med. Belgique, 1967, 6,235. 
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being reversibly bound to a protein molecule which is called a repressor (K). 
This repression can be lifted or induced if the repressor is made to combine with 
something else (called the inducer), thus liberating the free enzyme. Quite often 
the inducer is the substrate or product corresponding to the enzyme. Karfunkel 
and Seeligl3 have considered a cellular model for both substrate and product 
induction where the substrate and product, but not the enzyme or repressor are 
allowed to diffuse in and out of the cell. Schematically the reactions are 

kl k* k 
-+ S + E + ES + E + P + 

kr 

k-, 
E + R + E R  

It is assumed that the inducer (I) reacts with the repressor as follows, 

ka 

k-. 
21 + R + R I z  

where I is either S or P, and that the enzyme and repressor are conserved: 

ET = E + ER + ES (26) 
RT = R + ER + RIz 

The rate equations involving S and P are 

dS/dt = -klE.S + K(S0 - S)  

dP/dt = k1E.S - kP 

After applying the SSH and some unwieldy algebra the steady-state equations 
can be derived as usual. A graphical analysis of these equations is shown in 
Figure 5. It is seen that in the case of substrate induction there is only one possible 
steady state [defined as the intersection of the curves K(S0 - S) and klES 1, but 
for product induction there is a possibility of three steady states, (the curve 
representing klES will be quantitatively different in the two cases owing to the 
different SSH’s used, but the form will be the samel3 and so for simplicity only 
one curve is shown in the figure). As yet no experimental confirmation of these 
results is forthcoming, but unlike many hypothetical mathematical models this 
one is based on sound biochemistry.l4 

6 Coenzymes 
Certain enzymes are found on analysis to be pure proteins, whereas others are 
found to consist of a non-protein part in addition to the protein. ln such cases the 
protein part is known as the apoenzyme and the non-protein part as the coenzyme. 
Only when the two are combined in the haloenzyme is it active. NADH (dis- 
cussed in Section 4) is actually the coenzyme of horseradish peroxidase. Proteins 
contain a number of ionizing groups such as COzH and in these cases the hydro- 

l3 H. R. Karfunkel and F. F. Seelig, J.  Theor. Biol., 1972, 36, 237. 
E. C. Webb, ‘Enzymes and Metabolic Inhibitors’, Academic Press, London, 1963, Vol. 1.  
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Partial 
rate 

P 
Figure 5 Steady-state analysis of equation (27) 

gen ion may be thought of as the coenzyme and the ionized protein (COZ-) as 
the apoenzyme.l5J6 The apoenzyme has two binding sites, one for the coenzyme 
which it binds first and one for the substrate. If it binds a second molecule of 
coenzyme the enzyme is inactivated. Finally, the product of reaction always 
dissociates before the reacted form of the coenzyme. Denoting by C and C' the 
coenzyme and its reacted form respectively the above mechanism can be sum- 
marized by the following scheme 

ka k. 
EC + S+ECS+EC'  + P +  

The corresponding rate equation is 

l6 L. Michaelis and H. Davidsohn, Biochem. Z., 191 1, 35, 386. 
L. Michaelis and M. Rothstein, Biochem. Z., 1920, 110, 217. 
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The first term of equation (29) passes through a maximum as C is varied and 
hence the steady-state analysis proceeds similarly to that of substrate inhibition 
given in Section 4, the independent parameters being K, CO, and S. The scheme 
is a particular example of a two-substrate reaction17 (the coenzyme being the 
other substrate). It illustrates what seems to emerge as a necessary condition for 
multistability (and probably oscillation kinetics as well) in these biochemical 
systems. The enzyme must have two sites of attachment capable of binding 
substrate and repressor/inducer. 

7 Sigmoid Kinetics 
All of the schemes described above can be classed in the general category of 
sigmoid kinetics. Many simple enzyme-catalysed reactions show a hyperbolic 
relationship between rate and substrate concentration. However, others show a 
sigmoidal relationship between rate and concentration in which the slope of the 
curve initially increases and then decreases, instead of decreasing steadily as in 
the former case.17 An equation that can be fitted to most cases of sigmoid 
kinetics isla 

is + jS2 
k -k IS + mS2 

Rate = 

where i, j, k, and l are constants. This expression, initially zero, approaches j /m  
as S approaches infinity. Most of the rate laws discussed above are of this type. 
For example the general function depicted in Figure 6b is very similar to that 

[oxidation rate] 

7 

T-’ 
Figure 6 Arrhenius plots for succinate oxidation by (a) rat liver mitochondria and (b) 
chilling sensitive cucumber fruit 

l7 K. J. Laidler and P. S. Bunting, ‘The Chemical Minetics of Enzyme Action’, Clarendon 

l8 W. Ferdinand, Biochem. J. ,  1966, 98, 278. 
Press, Oxford, 1973. 
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shown in Figure 5 for enzyme induction. Further, if j l  < im expression (30) 
passes through a maximum and rate laws similar to that of substrate inhibition 
(Section 4) are obtained. Thus another general condition for multistability in 
enzyme kinetics is that the rate laws show a sigmoid dependence. 

A particular example of equation (30) is furnished by allosteric Ieactions. 
Allostery is a term coined by Monod, Wyman, and Changeaux and refers to the 
attachment of a substrate or modifier at a site other than the catalytic site, with 
resulting modification of the enzyme. Allosteric enzymes consist of a number of 
identical subunits which can exist in two or more conformations which have 
different binding abilities for the substrate. The equilibria between the various 
conformers and substrate are complex but in general the rate law for an allo- 
steric reaction is given by the expression17 

S(1 + S) + SCL(1 + C S )  

(1 + S)2 + L(1 + CS)2 
Rate cc 

for a two-conformer model, where L is the equilibrium constant for intercon- 
conversion between the two conformers and c is the ratio of the binding abilities 
of the two conformers. Comparing (31) with (30) we see that 
jl = (1 + c2L)(2 + 2cL) and im = (1 + cL)(l + c2L), and hence j l  4: im. 
However, if we now include product inhibition we get the general rate equations 

- ( i s  + jS2)  
k + IS + mS2 + nPg - + K(S0 - S) 

dS 
d t  
-- 

( i s  + jS2) 
k + IS + mS2 + nPq - - kP 

dP 
dt 
-- 

In the steady state K(So - S )  = kP, and so 

- ( i s  + j S 2 )  
k + IS + mS2 + nr(So - S ) g  

O =  + K(So - S) (33) 

If q = 1 the inhibition has the effect of reducing I and thus increasing the likeli- 
hood that the inequality jZ < im will be satisfied. If q = 2 , l  is reduced and rn is 
increased so that this possibility is even further increased. Looking at equation 
(33) this will be most likely for strong inhibition (large n), rapid flux (large K), 
and slow consumption of P (small k). 

8 Discontinuities in Arrhenius Plots 
In this section we present some experimental results which suggest the existence 
of multiple steady states but which are as yet not fully understood. In a simple 
reaction, a plot of R log k against 1/T is a straight line of slope - E, where R is 
the universal gas constant, k is the reaction rate constant, and E is the activation 
energy for the reaction. Discontinuities in such plots are fairly common in bio- 
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logical s y ~ t e r n s ~ ~ ~ ~ ~  and have attracted considerable attention both recently and 
also in earlier studies.21 In the 19203, the temperature dependence of many bio- 
logical processes was studied and shown to fit the Arrhenius equation. 

Often, however, sharply defined discontinuities either in slope22 or in both slope 
and rate, as shown in Figure 6, also appeared.lg923924 A certain amount of con- 
troversy has existed over the interpretation of these plots. One faction claims 
that the discontinuities do not exist,25 whereas Crozier21 and others claim an 
explanation on the basis of simultaneously occurring reactions taking over the 
rate-determining role in different temperature ranges. The latter theory is 
difficult to accept, particularly as it requires the reaction of lower activation 
energy to become dominant at higher temperatures; nor does it explain dis- 
continuities in activation energy or in reaction rate. It has been suggested that 
only the existence of a phase change19 would account for the phenomena, 
though no independent evidence for such a phase change is produced. An 
alternative proposal (although also not proven) is the existence of multiple 
steady states in which the temperature would be the independent factor determin- 
ing the critical conditions. Such switching has been observed in thermokinetic 
systems (see next section), but has been neglected in biological systems because 
of the small temperature range involved. However, since the switch between 
steady states is so sensitive, there is no reason why this critical condition should 
not occur at physiological temperatures. Gray and Aaronsg have considered the 
autocatalytic scheme discussed in Section 2 in a region of monostability and shown 
that multistability can be produced by thermokinetic feedback. In this case if 
k-1 has a strong temperature dependence such that the forward reaction is 
exothermic, then by considering the variation of temperature explicitly admitting 
heat losses hysteresis can be produced. This then provides a mechanism whereby 
a small change in temperature could cause a large switch in metabolic activity. 
Temperature regulation could operate using just such a mechanism, or at least 
small temperature valiations may be more significant than they first appear. 

9 Thermokinetic Multistability 
As well as the simple type of ‘thermal’ multistability exhibited in flow reactors 
shown in Figure 1, a ‘chemical’ multistability can also arise due to sigmoid or 
other types of complex kinetics. The oxidation of propane26 has been studied 
under flow reactor conditions as has that of acetaldehyde,27 which also shows 
multistability, hysteresis, and oscillation. The latter system is reasonably well 

l B J. Kumato, J. K. Raison, and J. M. Lyons, J. Theor. Biol., 1971, 31, 47. 
8 o  M. H. Han, J. Theor. Biol., 1972, 35, 543. 
a1 W. J. Crozier, J. Gen. Physiol., 1924, 7 ,  123. 
I B  T. J. B. Stier, J. Gem Physiol., 1933, 16, 815. 
a3 J. M. Lyons and J. K. Raison, Comp. Biochem. Physiol., 1970, 37,405. 
a 4  J. M. Lyons and J. K. Raison, Plant Physiol. (Lancaster), 1970, 45, 386. 
B 6  J. Belehradek, Ann. Rev. Physiol., 1957, 19, 59. 
a s  B. F. Gray and P. G. Felton, Combustion and Flame, 1974, 23, 295. 
z7  B. F. Gray and P. G. Felton, and N. Shank, 2nd European Symposium on Combustion, 

Orleans, 1975. 
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understood kinetically and thermodynamically and a good representation of 
these strange observed facts has been given.28 

In principle a system which shows ‘chemical’ multistability and which also has 
a significant heat release could show very odd behaviour, as its heat release rate 
could be multivalued at any given temperature depending on which ‘kinetic’ 
steady state it happened to be in. Thus in Figure 7 (to be compared with Figure 1) 

Heat 
release/loss 

Reactant temperature 

Figure 7 Heat generation and loss curves for an exothermic system showing ‘chemical’ 
multistabllity 

the stable reaction mixtures represented by points A and D could be in thermal 
equilibrium with each other (i.e. in different reactors) but in completely different 
steady states and in contact with totally different ambient temperatures TO’ and 
TO“. Such a system has not yet been realized experimentally. 

All of the examples considered in this review have been concerned with spatially 
homogeneous systems. Chemical engineers who have been concerned with 
chemical reactions in tubular flow reactions have observed multiple steady states 

O *  P. G. Felton, B. F. Gray, and N. Shank, Combustion and Flame, in press. 
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which are spatially inhomogeneo~s.~~~30 They have found that a simple first-order 
irreversible exothermic reaction, when its heat effect is taken into account, can 
show one or three steady-state profiles. Multistability is favoured by concen- 
trated mixtures and long tubes. 

10 Relaxation Oscillations 
Finally we point out that if multistability exists it is possible for the system to 
perform oscillations in which the variables are continuously switched from one 
branch of the steady-state curve to the other.g This behaviour is referred to as a 
relaxation oscillator because of the rapid jumps followed by relatively slow 
m0tion.3~ In all the examples discussed above the steady states are functions of 
several independent parameters, either the concentration of some substance held 
in excess (the so-called ‘pool’ chemicals) or a physical parameter such as 
temperature. If the variation of these parameters is considered explicitly the 
SSH will still be valid, except at the critical points where transition to the other 
branch of the steady-state curve occurs. The motion along the steady-state curve 
will be governed by the differential equations for the ‘pool’ chemicals or tem- 
perature, but the jumps will be very rapid and of negligible time compared with 
the other motion. Several examples of this type of behaviour axe to be found in 
the paper by Gray and A a r o n ~ . ~  

11 Conclusions 
Chemists have been traditionally interested in closed chemical systems and have 
thus missed the wealth of information available from open systems. For a start 
one can deal with true steady states and the analysis is that of algebraic equations 
rather than differential equations. Consequently the idea of multistability has 
not occurred to many chemists. However, in open reacting biochemical systems- 
such as a living organism-the concept of switching from one steady state to 
another is very appealing, although in most cases the evidence is only circum- 
stantial. Furthermore, in considering these systems most workers have con- 
centrated on finding the conditions for limit cycle oscillations rather than for 
multistability. The requirement, in fact, for both of these phenomena is the same, 
i.e. some sort of feedback. 

In the models considered above certain general trends can be found. Positive 
or negative feedback from either substrate or product can give rise to multi- 
stability. Switching between alternate pathways can be mediated by suitably 
linking them. A general feature of all the models is that the enzyme needs to have 
at least two sites-either for two molecules of repressor or for one molecule of 
repressor and one molecule of substrate-in order to achieve multistability. 
Finally, any scheme that exhibits sigmoid kinetics can show multiple steady 
states in an open chemical reactor under suitable conditions. 

2 9  L. R. Raymond and N. R. Amundson, Canad. J. Chem. Eng., 1964,42, 173. 
30 D. Luss and N. R. Amundson, Canad. J. Chem. Eng., 1967,45, 341. 
31 A. A. Andronov, A. A. Vitt, and S. E. Khaikin, ‘Theory of Oscillators’, Pergamon Press, 

Oxford, 1966. 
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Two final points can be made. Firstly, only enzyme-substrate reactions have 
been considered here, but nearly all the models can be cast in a genetic framework 
in which the feedback is to the gene and not the enzyme.5~~2 Secondly, if hysteresis 
exists there is the possibility that the system can perform relaxation oscillations 
in which the variables continuously switch from one branch of the steady-state 
curve to the other. Thiscan be achieved by allowing the so-called ‘pool’ chemicals, 
normally held in excess, to vary. This reinforces the idea that in these systems 
multistability and limit cycle oscillations go hand in hand. 

33 L. J. Aarons and B. F. Gray, J. Theor. Biol., 1975, 50, 501. 
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